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Macroscopic dynamics near the isotropic–smectic-A phase transition

Helmut R. Brand,1 Prabir K. Mukherjee,1 and Harald Pleiner2

1Theoretische Physik III, Universita¨t Bayreuth, D-95440 Bayreuth, Federal Republic of Germany
2Max-Planck-Institut fu¨r Polymerforschung, D-55021 Mainz, Federal Republic of Germany

~Received 31 March 2000; revised manuscript received 4 December 2000; published 23 May 2001!

The hydrodynamic theory for the smectic-A phase and the isotropic phase is generalized to the macroscopic
dynamics in the vicinity of the isotropic–smectic-A phase transition. The macroscopic dynamic equations are
presented on the isotropic side as well as on the smectic-A side of the phase transition, incorporating the effect
of an external electric field. Specific experiments to test some of the effects contained in the macroscopic
dynamic equations are suggested.
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I. INTRODUCTION

The hydrodynamic description of liquid crystals has
tracted physicists since the 1970s@1–6#. It turns out that the
anisotropy of liquid crystals has a number of interesting i
plications for their hydrodynamic behavior. Over the last tw
decades the hydrodynamic approach has been applied
number of liquid crystalline phases, including biaxial nem
ics @7,8# and hexatic phases@9#.

Following Khalatnikov’s work@10# near thel transition
in 4He, Liu @11# and Brand@12# discussed how to incorpo
rate the modulus of the order parameter near the nema
smectic-A and the nematic-columnar transitions. In this a
proach one takes into account not only the tru
hydrodynamic variables, which have an infinite relaxati
time in the long wavelength limit, but also so-called mac
scopic variables, which relax on a long, but finite time sca

This macroscopic dynamicsnear a phase transition
should not be confused with a~time-dependent! Ginzburg-
Landau descriptionof the phase transition. The latter in
volves a free energy functional that contains an expansio
the order parameter usually to fourth or sixth order, depe
ing on whether the phase transition under consideration i
second order or weakly first order. The approach of mac
scopic dynamics, however, deals with the dynamics of
deviations of the order parameter modulus from its equi
rium value. It is validnear the phase transition, since it in
cludes the order parameter modulus as a variable~in addition
to those variables already present far from the phase tra
tion!, but not at the phase transition, where nonlinear a
critical effects must be considered. Therefore, there are
different ~and not directly connected! macroscopic dynamic
descriptions below and above the phase transition, bec
the symmetries of the phases are different.

The concept of macroscopic dynamics is also usefu
macroscopic complex systems far from phase transitions,
with variables that relax slowly in space and time. One gro
of such systems encompasses polymer melts and solutio
their isotropic and nematic phases, to which the approac
macroscopic dynamics was applied in Refs.@13,14# and
@15,16#, respectively. For a review of these recent devel
ments we refer to Ref.@17#.

In the present paper we study the macroscopic dyna
behavior near the isotropic–smectic-A transition on both
1063-651X/2001/63~6!/061708~6!/$20.00 63 0617
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sides of the phase transition. In Sec. II we give the mac
scopic equations on the smectic-A side of the transition. First
we discuss the static properties, and then we investigate
versible and dissipative dynamic effects. In Sec. III w
present the macroscopic equations on the isotropic sid
the phase transition, followed in Sec. IV by suggestions
experiments, by which one could detect some of the cro
coupling terms introduced here. We also close with br
conclusions.

II. MACROSCOPIC EQUATIONS IN THE
SMECTIC A PHASE BELOW THE

ISOTROPIC –SMECTIC- A TRANSITION

Throughout we shall focus our discussion on macrosco
aspects. This means that we are interested in length sc
and time intervals that are large compared with molecu
lengths and collision times. In other words, the characteri
frequenciesv and wave vectorsk must satisfy the inequali-
ties vtc!1, klc!1. Here 1/tc and l c are microscopic fre-
quencies and microscopic length scales. The discussio
the macroscopic dynamics of liquid crystals proceeds
three steps. It is first necessary to identify the macrosco
and hydrodynamic variables that describe the macrosc
state of the system. Second, one derives a set of macrosc
equations for the macroscopic variables, for the conser
quantities~mass, energy, and linear momentum@18#! and for
the variables associated with spontaneously broken cont
ous symmetries. Finally these equations must be solved
specific geometries relevant to experiment.

For the smectic-A ~smA! phase we have the hydrody
namic variables densityr ~conservation of mass!, entropy
density s, density of linear momentumg ~conservation of
linear momentum!, and displacementuz of the smectic layers
along thez axis associated with the density wave paral
to the layer normal.~Conservation of energy is taken ca
of by the Gibbs relation below.! In addition to these hydro-
dynamic variables we have additional macroscopic va
ables, namely, the modulusSof the nematic order paramete
Qi j 5(S/2)(3ninj2d i j ) ~a symmetric traceless tensor cha
acterizing the orientational order! and the real modulus of the
smectic order parameterW. To characterize the smectic o
der, we use the magnitude of the smectic order param
@11#, i.e., the real quantityW. As an alternative one could
©2001 The American Physical Society08-1
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BRAND, MUKHERJEE, AND PLEINER PHYSICAL REVIEW E63 061708
use, instead ofW anduz , the complex scalarc ~compare the
discussion below!. Throughout this paper we assume that t
nematic directorn̂ and the smectic layer normalk̂ are parallel
to each other. Thus we haven̂i k̂. We note, however, that i
has recently become clear that there might be situation
smectic liquid crystals, for example under shear flows, wh
this restriction might no longer strictly apply@19#. Through-
out our analysis of the smectic-A side of the isotropic–
smectic-A phase transition we will focus on the linearize
macroscopic equations. With the help of Euler’s relations
Gibbs relation takes the form

Tds5d f2mdr2v idgi2C id¹ iuz2PdS2MdW, ~1!

wheref is the~conserved! energy density of the system in th
laboratory frame. The summation over repeated indice
always implied.SandW denote the deviations of the nemat
and smectic order parameter moduli from their equilibriu
valuesS0 andW0. In Eq. ~1! the temperatureT, the chemical
potentialm, the velocity fieldv i , the fieldC i , and the order
parameter fieldsP and M are called thermodynamic conju
gates. We note that bothS andW are scalar quantities unde
all symmetry operations, whileuz andC i change sign, when
n̂ is replaced by2n̂. Equation~1! gives a relation between
the changes in the macroscopic variables and the ent
densitys.

The above mentioned thermodynamic conjugates and
static properties of the smA phase can be obtained from
expansion of the generalized energyF5F01* f dt. Hence,
for the generalized energy~in quadratic and bilinear order!,
we find

F5F01E dtF1

2
aS21~brdr1bsds!S1

1

2
aW21hSW

1~crdr1csds!W1
1

2
B~¹zuz!

21
1

2
K~¹'

2 uz!
2

1~drdr1dsds1dWW!¹zu1g~¹zuz!SG , ~2!

whereF has the standard form of the smectic free energy@1#
supplemented by quadratic and bilinear terms in the mod
As usual for the smectic-A phase, terms containing¹'uz are
not allowed due to the spontaneously broken rotatio
symmetry.F05* f 0dt is the generalized energy of isotrop
liquids with f 05(1/2)Arr(dr)21Ars(dr)(ds)
1(1/2)Ass(ds)21(1/2r)g2, where Arr5(]m/]r)s , Ass

5(]T/]s)r , andArs5(]T/]r)s . HereB is the compres-
sional modulus of the smectic layers, and the layer bend
modulusK is close in magnitude to the splay modulus
nematics@1#. The transverse Laplacian is defined as¹'

2

5(d i j 2ninj )¹ i¹ j . It is well known that the linearized
theory @and hence Eq.~2!# is not rotationally invariant. For
nonlinear invariant treatments of smectic phases, see R
@20,21#.
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The thermodynamic conjugates can easily be obtai
from the generalized energy by taking the variational deri
tive of F with respect to one variable while keeping all oth
variables fixed, resulting in

C i5
dF

d~¹ iuz!
5~B¹zu1dsds1drdr1dWW1gS!d iz

2K~d i j 2ninj !¹ j¹'
2 uz , ~3!

P5
dF

dS
5aS1bsds1brdr1hW1g¹zuz , ~4!

M5
dF

dW
5aW1crdr1csds1hS1dW¹zuz , ~5!

dT5
dF

ds
5Assds1Asrdr1bsS1csW1ds¹zuz , ~6!

dm5
dF

dr
5Arrdr1Asrds1brS1crW1dr¹zuz , ~7!

v i5
1

r
gi . ~8!

The resulting dynamic equations for the conserved fields

]r

]t
1¹ igi50, ~9!

]gi

]t
1¹ js i j 50, ~10!

wheres i j is the stress tensor. The above two equations
the conservation laws for the density and the density of
linear momentum. The balance equations for the nonc
served fields take the forms

]s

]t
1¹ i j i

s5
R

T
, ~11!

]uz

]t
1X50, ~12!

]S

]t
1Y50, ~13!

]W

]t
1Z50. ~14!

Here j i
s is the entropy current, andX, Y, andZ are the qua-

sicurrents associated with the density wave and change
the nematic and smectic order parameters, respectively.
quantity R/T is called the entropy production, andR the
dissipation function. The dissipation function is zero for r
versible processes and positive for irreversible processe

We now evaluate the currentss i j and j i
s and the quasi-

currentsX, Y, andZ. To obtain them we split all currents an
8-2
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MACROSCOPIC DYNAMICS NEAR THE ISOTROPIC- . . . PHYSICAL REVIEW E 63 061708
quasicurrents into reversible (R50) and irreversible (R
.0) contributions. Using general symmetry and Galilean
variance arguments, for the reversible parts of the curre
we obtain

gi
R5rv i , ~15!

s i j
R5pd i j 2C jd iz1m i j P1b i j M , ~16!

XR5vz , ~17!

YR5m i j Ai j , ~18!

ZR5b i j Ai j , ~19!

j i
sR50, ~20!

where p is the hydrostatic pressure,Ai j is the symmetric
velocity gradientAi j 51/2(¹ iv j1¹ jv i), andb i j andm i j take
the uniaxial formb i j 5b ininj1b'(d i j 2ninj ). The hydro-
static pressurep is like in an isotropic fluid, and can b
expressed as

p52 f 1mr1Ts1v•g. ~21!

For the dissipative parts we will now giveR, which repre-
sents the dissipative work that must be done on the sys
by external forces if the thermodynamic variations were s
tained. Within linear irreversible thermodynamics the dis
pation function is a bilinear form of the forces. Using sta
dard symmetry arguments@3,17#, like time reversal
symmetry, rotational invariance, etc., we find

R5E dtF1

2
k i j ~¹ iT!~¹ jT!1

1

2
h i jkl ~¹ iv j !~¹kv l !1

t

2
P2

1
m

2
~¹ iC i !~¹kCk!1

1

2
KMM21l i j ~¹ iT!~¹ jM !

1ci j ~¹ iT!~¹ j P!1bnj~¹mCm!~¹ j P!1aPM

1dnk~¹ jC j !~¹kM !1enk~¹ jC j !~¹kT!G , ~22!

wherel i j , ci j , and the thermal conductivity tensork i j have
uniaxial forms. The viscosity tensorh i jkl has five indepen-
dent coefficients@3# in the smectic-A phase.

Then the dissipative parts of the currents and quasi
rents are obtained by taking variational derivatives ofR with
respect to one thermodynamic force, while keeping all ot
forces fixed. Thus the dissipative parts read

j i
sD52k i j ¹ jT2l i j ¹ jM2ci j ¹ j P2eni¹kCk , ~23!

gi
D50, ~24!

s i j
D52h i jkl ¹kv l , ~25!

XD52m¹kCk2bnj¹ j P2dnk¹kM2enk¹kT, ~26!

YD5tP1aM2ci j ¹ i¹ jT2bnj¹ j¹kCk , ~27!
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ZD5KMM1aP2l i j ¹ j¹ iT2dnj¹ j¹kCk . ~28!

III. MACROSCOPIC EQUATIONS IN THE
ISOTROPIC PHASE ABOVE THE

SMECTIC- A –ISOTROPIC TRANSITION

In the isotropic phase above the isotropic–smectic-A tran-
sition there are patches with transient positional as wel
orientational order characteristic of smectic clusters, a
those with only transient orientational order characteristic
nematic clusters. Both types of clusters vary as a function
space and time, and do not give rise to a nonvanishing va
of either type of order parameter. Thus, as macroscopic v
ables, we have the nematic tensor order parameterQi j as
well as the complex scalar smectic order parameterc, whose
modulus characterizes the~time dependent! strength of the
smectic order and whose phase~or rather the gradient of it! is
related to the wave vector of the smectic patches. For
hydrodynamic variables in the isotropic phase, we haver, s,
and g, respectively. For mixtures one has, in addition, t
concentrationc as a conserved quantity. We will also includ
electric field effects, and take the electric displacement fi
Di as dynamic variable. For a description of the macrosco
dynamics in the isotropic phase we proceed in a way sim
to that in Sec. II.

Thus the Gibbs relation takes the form

Tds5d f2mdr2v idgi2Pi j dQi j 2~mcdc1mc* dc* !

1EidDi ~29!

where the asterisk denotes complex conjugation. The t
modynamic forces are temperatureT, chemical potentialm,
velocity v i , and electric fieldsEi , Pi j , mc, and mc* , re-
spectively. For the generalized energy in the isotropic pha
we find

F5E dtFArr

2
~dr!21Ars~dr!~ds!1

Ass

2
~ds!21

1

2r
g2

1
a

2
Qi j Qi j 1

1

2
Li jklmn~¹ iQjk!~¹ lQmn!1O~Q3!

1
a

2
ucu21

g

4
ucu41

C

2
u~¹21q0

2!cu21hQi j
2 ucu2

1~brdr1bsds!Qi j
2 1~crdr1csds!ucu2

2
1

2«
Di

22x1DiD jQi j 2x2Di¹ jQi j 2x3DiDi ucu2

1Gi jkl Qi j ~¹kc!~¹ lc* !G . ~30!

The first line contains the contributions familiar from
simple fluid, where the abbreviationsArr , Ass , andArs are
the same as in Sec. II. The second line contains all the te
characteristic of the isotropic-nematic transition@22#. Line 4
lists the static terms coupling the order parameters to den
r and entropy densitys, respectively, and the fifth line rep
8-3
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BRAND, MUKHERJEE, AND PLEINER PHYSICAL REVIEW E63 061708
resents the coupling of the order parametersQi j and c to
electric fields, where« is the dielectric constant of the iso
tropic phase. In the third line we have given the contributio
of the smectic order parameterc and its coupling terms to
the nematic order parameterQi j . We note that the gradien
term ;C is isomorphic to the corresponding term in th
Swift-Hohenberg equation describing the onset of conv
tion in two dimensions@23#. In both cases~the isotropic–
smectic-A phase transition and the nonequilibrium transiti
heat-conduction-state–convection! one has a transition from
a completely isotropic state to a state which is character
by a mean wavelength~the wavelength of the convectiv
rolls and the layer spacing in the smectic-A phase, respec
tively!. Thus—from the point of view of symmetry
considerations—there is a close structural analogy for
contribution between an equilibrium phase transiti
~isotropic–smectic-A) and a nonequilibrium phase transitio
~heat-conduction-state–convection!. In the sixth line the con-
tribution ;Gi jkl represents the lowest order coupling of t
nematic and the smectic order parameters containing sp
gradients. In the isotropic phase it takes the structureGi jkl
5G(d ikd j l 1d i l d jk), and thus contains one independent c
efficient. Apparently this contribution has not been discus
in the literature before. We note, however, that in a ve
recent paper we investigated@24# a Ginzburg-Landau de
scription of the isotropic–smectic-A transition, including
such a coupling term.

In the following we will write down the macroscopi
equations in terms of real quantities. We therefore repl
the smectic order parameterc by its modulus,W5c0, and
its phasef. Since the energy does not depend on the ph
~‘‘gauge invariance’’ meaning translational invariance in t
smectic case! only gradients of the phasef enter the Gibbs
relation. This is very similar in spirit to the situation in su
perfluid 4He above thel transition@10#.

For the modified Gibbs relation, we then have

Tds5d f2mdr2v idgi2Pi j dQi j 2MdW2V id¹ if

1EidDi , ~31!

where M5mceif1mc* e2 if and ¹ iV i5c0@mc* e2 if

2mceif#, and for the thermodynamic forces we find~ne-
glecting gradients ofW and ofQi j )

dT5Assds1Asrdr1bsQi j
2 1csW2, ~32!

dm5Arrdr1Asrds1brQi j
2 1crW2, ~33!

v i5
1

r
gi , ~34!

Pi j 5aQi j 1O~Q2!12~bsds1brdr1hW2!Qi j 2x1DiD j

12GW2~¹ if!~¹ jf!, ~35!
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M5aW1gW312W~crdr1csds1hQi j
2 !

14WGQi j ~¹ if!~¹ jf!22x3WDiDi

1CW~@¹2f#21~@¹ if#22q0
2!2!, ~36!

Ei5
1

«
Di12x1D jQi j 12x3DiW

2 ~37!

V i54GW2Qi j ¹ jf2CW2~¹212q0
222@¹ if#2!¹ if.

~38!

In writing down Eqs.~32!–~38! we have concentrated o
spatially homogeneous terms with respect toW andQi j , and
we have also only kept the coupling terms to lowest orde
the corresponding variables. The balance equations are

]r

]t
1¹ igi50, ~39!

]gi

]t
1¹ js i j 50, ~40!

]s

]t
1¹ i j i

s5
R

T
, ~41!

]Qi j

]t
1vk¹kQi j 1Yi j 50, ~42!

]W

]t
1v i¹ iW1Z50, ~43!

]f

]t
1v i¹ if1I f50, ~44!

]Di

]t
1vk¹kDi1~D3v! i1 j i

e50, ~45!

with the vorticity v i5(1/2)(curlv) i . Equation ~45! ex-
presses conservation of the electric charge densityre @21#
with re5¹ iDi in suitable units.

We now evaluate the reversible and dissipative contri
tions to the currentsj i

s , s i j , andj i
e and quasicurrentsYi j , Z,

and I f . For the reversible parts of the currents we obtain

gi
R5rv i , ~46!

s i j
R5pd i j 1lPi j 1bd i j M1 1

2 ~D jEi2EjDi !, ~47!

Yi j
R5lAi j , ~48!

ZR5bAkk , ~49!

I f
R50, ~50!

j i
e R50, ~51!

where we have used the symmetrized velocity gradientAi j
5(1/2)(¹ iv j1¹ jv i).
8-4
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In a similar way as in Sec. II, we obtain the dissipati
function

R5E dtFk2 ~¹ iT!~¹ iT!1
1

2
h i jkl Ai j Akl1

1

2
KMM2

1l~¹ iT!~¹ iM !1a i jkl Pi j PklM1
1

2
t i jkl Pi j Pkl

1
sE

2
EiEi1k8Ei~¹ iT!1l̃Ei~¹ iM !

1t i jkl8 ~¹ iT!~¹ j Pkl!1 t̃ i jkl Ei~¹ j Pkl!

1
z

2
~¹ iV i !~¹ jV j !G , ~52!

where a i jkl , t i jkl , t̃ i jkl , and t i jkl8 are of the forma i jkl

5(a/2)(d ikd j l 1d i l d jk), and whereh i jkl has a structure fa
miliar from the hydrodynamics of simple liquids@18#. Hence
the dissipative parts of the currents read

j i
sD52k¹ iT2l¹ iM2t8¹ j Pi j 2k8Ei , ~53!

gi
D50, ~54!

s i j
D52h i jkl Akl , ~55!

Yi j
D5tPi j 12aPi j M2t8¹ i¹ jT2

t̃

2
~¹ iEj1¹ jEi !,

~56!

ZD5KMM1aPi j Pi j 2l¹ i¹ iT2l̃¹ iEi , ~57!

I f
D5z¹ iV i , ~58!

j i
eD5sEEi1k8¹ iT1l̃¹ iM1 t̃¹ j Pi j ~59!

IV. SUGGESTIONS FOR EXPERIMENTS AND
CONCLUSIONS

To evaluate the influence of the cross-coupling betw
the smectic and the nematic order parameter, we investi
its influence on the electric birefringence induced by an
ternal electric field in the isotropic phase above t
isotropic–smectic-A transition. From Eqs.~35!–~37!, in a
static situation for constant density and under adiabatic c
ditions in lowest order, neglecting all nematic-smectic cro
couplings and takingEi ẑ ~with Qzz5S) and ¹zf5q0, we
obtain

05aS2x1Dz
2 , ~60!

05a22x3Dz
21gW2, ~61!

Dz5«E. ~62!

Thus in this approximation we find that an external field c
induce both nematic and smectic orders, but these two ty
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of order are decoupled to lowest order. The classical re
above the nematic-isotropic transition@22#,

S5
x1

a
«2E2, ~63!

is obtained, showing a divergent nematic order at the te
perature for a hypothetical isotropic to nematic second or
phase transition, where the system would order sponta
ously already without an external field. For the smectic or
we obtain

W25
1

g
~2a12x3«2E2!, ~64!

indicating a possible smectic ordering for positivex3, if the
external field exceeds the thresholdEc

25a/(2x3«2). This
threshold is zero at the temperatureTAI* for a hypothetical
isotropic to smectic-A second order phase transition. IfE
,Ec , there is no smectic order (W50). For a given externa
field E.Ec the induced smectic order is largest forT5TAI* ,
but does not diverge. The difference from the nematic or
@Eq. ~63!# is due to the fact that an external field brea
rotational~but not translational! invariance externally.

Next we investigate the influence of the contribution;h,
which couples smectic and nematic orders. In this case,
obtain

05aS12hSW22x1Dz
2 , ~65!

2gW25a12hS222x3Dz
2 , ~66!

«E5Dz~112«x1S12«x3W2!. ~67!

Eliminating W2, we obtain, to lowest order inh ~for E
.Ec),

aS5x1Dz
2F12

4hx3

ag
DD

2 G , ~68!

where DD
2 5Dz

22a/(2x3), if positive, and zero otherwise
Thus a negativeh increases the nematic order. The nema
order@Eq. ~68!#, and therefore the electric birefringence, a
quires a correction;E4 from the coupling to the smectic
order parameter above the isotropic–smectic-A transition for
E.Ec . We note that the temperature dependence ofS(E2)
predicted here is completely different from that observ
above the nematic-isotropic transition.

The effect of the parameterG, which couples smectic and
nematic orders through a finite wavelengthq0 of the tran-
sient smectic layer structure, is rather different. With t
same procedure as above, to lowest order inG, and for fields
exceedingEc , the nematic order is

aS5x1Dz
22

4x3

g
Gq0

2DD
2 , ~69!

showing noE4 correction, but a change of slope inS/E2

aboveEc @below Ec there is noG correction to the classica
result ~63!#.
8-5
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It also seems worthwhile to emphasize the differen
from the case of the strain birefringence observed exp
mentally above the isotropic–smectic-A transition in liquid
crystalline elastomers@25#. In the latter case the induce
amount of birefringenceDn is found to beDn;s ~heres is
the applied mechanical stress!. Furthermore, the temperatur
dependence is qualitatively different from the one discus
above.

To test one of the dynamic cross-coupling effects we
vestigate the consequences associated with the coefficieb
in Eqs. ~47! and ~49!: the divergence of the velocity field
couples to the modulus of the smectic order. This leads
suggest the following setup. A sample of a material above
isotropic to smectic-A transition is exposed to a stationa
sound wave. This sound wave is longitudinal and thus c
nected to¹ iv iÞ0. This in turn gives rise to a nonvanishin
value ofW: using Eqs.~43! and ~49! we obtain

W5
b

c
A exp@ i ~vt2ck!#, ~70!

whereA is the amplitude of the velocity of the first soun
mode with frequencyv, wave vectork, and speedc. The
speed of first sound itself is also slightly modified from
valuec0 without smecticA fluctuations:
er

nd

y

v

06170
e
i-

d

-
t

to
n

-

c25c0
21b2a. ~71!

By choosing a suitable frequency of the sound wave
;104 . . . 105 Hz, one obtains a wavelength o
;1 . . . 10 cm for themodulation ofW. Thus as one ap-
proaches the isotropic–smectic-A transition from above by
cooling, one should be able to detect via spatially resolv
x-ray scattering a spatially varying degree of smectic or
induced by a stationary sound wave, providedb is large
enough.

The macroscopic dynamics in the isotropic and in the l
uid crystalline smectic-A phase near the isotropic–smectic-A
phase transition have been derived using symmetry con
erations, linear irreversible thermodynamics, and conse
tion laws. For some of the static and dynamic cross coup
terms, we have suggested experiments to test their influe
on the macroscopic dynamics near this phase transition.
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