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Macroscopic dynamics near the isotropie-smecticA phase transition
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The hydrodynamic theory for the smecficphase and the isotropic phase is generalized to the macroscopic
dynamics in the vicinity of the isotropic—smec#cphase transition. The macroscopic dynamic equations are
presented on the isotropic side as well as on the smAcside of the phase transition, incorporating the effect
of an external electric field. Specific experiments to test some of the effects contained in the macroscopic
dynamic equations are suggested.

DOI: 10.1103/PhysReVvE.63.061708 PACS nuni®)er64.70.Md, 05.70.Ln, 61.36.v

I. INTRODUCTION sides of the phase transition. In Sec. Il we give the macro-
scopic equations on the smechcside of the transition. First
The hydrodynamic description of liquid crystals has at-we discuss the static properties, and then we investigate re-
tracted physicists since the 1970s-6]. It turns out that the ~versible and dissipative dynamic effects. In Sec. Ill we
anisotropy of liquid crystals has a number of interesting im-present the macroscopic equations on the isotropic side of
plications for their hydrodynamic behavior. Over the last twothe phase transition, followed in Sec. IV by suggestions for
decades the hydrodynamic approach has been applied toexperiments, by which one could detect some of the cross-
number of liquid crystalline phases, including biaxial nemat-coupling terms introduced here. We also close with brief

ics [7,8] and hexatic phasd$)]. conclusions.

Following Khalatnikov’'s work[10] near the\ transition
in “He, Liu [11] and Brand 12] discussed how to incorpo—_ Il. MACROSCOPIC EQUATIONS IN THE
rate the modulus of the prder parameter near the ne_mat|c— SMECTIC A PHASE BELOW THE
smecticA and the nematic-columnar transitions. In this ap- ISOTROPIC —SMECTIC-A TRANSITION

proach one takes into account not only the truly
hydrodynamic variables, which have an infinite relaxation Throughout we shall focus our discussion on macroscopic
time in the long wavelength limit, but also so-called macro-aspects. This means that we are interested in length scales
scopic variables, which relax on a long, but finite time scaleand time intervals that are large compared with molecular

This macroscopic dynamicsiear a phase transition lengths and collision times. In other words, the characteristic
should not be confused with @me-dependentGinzburg-  frequenciess and wave vectork must satisfy the inequali-
Landau descriptiorof the phase transition. The latter in- ties w7,<1, kl.<1. Here 1f. andl; are microscopic fre-
volves a free energy functional that contains an expansion iquencies and microscopic length scales. The discussion of
the order parameter usually to fourth or sixth order, dependthe macroscopic dynamics of liquid crystals proceeds in
ing on whether the phase transition under consideration is ghree steps. It is first necessary to identify the macroscopic
second order or weakly first order. The approach of macroand hydrodynamic variables that describe the macroscopic
scopic dynamics, however, deals with the dynamics of thetate of the system. Second, one derives a set of macroscopic
deviations of the order parameter modulus from its equilib-equations for the macroscopic variables, for the conserved
rium value. It is validnear the phase transition, since it in- quantities(mass, energy, and linear moment{8]) and for
cludes the order parameter modulus as a varié@bladdition  the variables associated with spontaneously broken continu-
to those variables already present far from the phase transpus symmetries. Finally these equations must be solved for
tion), but notat the phase transition, where nonlinear andspecific geometries relevant to experiment.
critical effects must be considered. Therefore, there are two For the smectiA (smA) phase we have the hydrody-
different (and not directly connectg¢dnacroscopic dynamic namic variables density (conservation of magsentropy
descriptions below and above the phase transition, becauskensity o, density of linear momenturg (conservation of
the symmetries of the phases are different. linear momentury and displacement, of the smectic layers

The concept of macroscopic dynamics is also useful iralong thez axis associated with the density wave parallel
macroscopic complex systems far from phase transitions, buo the layer normal(Conservation of energy is taken care
with variables that relax slowly in space and time. One groupf by the Gibbs relation belowln addition to these hydro-
of such systems encompasses polymer melts and solutions dlynamic variables we have additional macroscopic vari-
their isotropic and nematic phases, to which the approach aibles, namely, the modul&of the nematic order parameter
macroscopic dynamics was applied in Ref$3,14 and  Q;;=(S/2)(3n;n;— §;) (a symmetric traceless tensor char-
[15,16, respectively. For a review of these recent develop-acterizing the orientational ordeaind the real modulus of the
ments we refer to Refl17]. smectic order paramet&¥. To characterize the smectic or-

In the present paper we study the macroscopic dynamider, we use the magnitude of the smectic order parameter
behavior near the isotropic—smec#ictransition on both [11], i.e., the real quantity’. As an alternative one could
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use, instead 0¥ andu,, the complex scalay (compare the The thermodynamic conjugates can easily be obtained
discussion beloyv Throughout this paper we assume that thefrom the generalized energy by taking the variational deriva-

nematic directon and the smectic layer normialare parallel ~ tive of F with respect to one variable while keeping all other
to each other. Thus we havéik. We note, however, that it Variables fixed, resulting in

has recently become clear that there might be situations in SF

smectic liquid crystals, for example under shear flows, where ¥,=————=(BV,u+d’so+d”sp+d"W+ yS) s,
this restriction might no longer strictly applit9]. Through- o(Viuy)

out our analysis of the smectik-side of the isotropic— —K(8;—nin)V,V2u,, 3

smecticA phase transition we will focus on the linearized
macroscopic equations. With the help of Euler’s relations the =
=aS+b?8o+b”Sp+hW+yV,u,, 4

Gibbs relation takes the form P= 35S

Tdo=df—udp—v;dg,—V¥,dV,u,— PdS—MdW, (1) |\/|=(?TFV:aW+Cp5p+C‘T5(r+hS+dWVZuZ, ®)
wheref is the(conserveflenergy density of the system in the SE
laboratory frame. The summation over repeated indices is §T= —=A,,00+A,,0p+b S+ cW+dV,u,, (6)
always implied SandW denote the deviations of the nematic éa
and smectic order parameter moduli from their equilibrium
valuesS, andW,. In Eq. (1) the temperaturd&, the chemical Sp= 5_': =A, Sp+A,,80+b°S+CcPW+dV,u,, (7)
potential, the velocity fieldv; , the fieldW¥,, and the order op 7 o
parameter field$® and M are called thermodynamic conju-
gates. We note that bothandW are scalar quantities under 1

all symmetry operations, while, and¥; change sign, when vi :;gi ' ®)

n is replaced by-n. Equation(1) gives a relation between

the changes in the macroscopic variables and the entropv1

densityo. dp
The above mentioned thermodynamic conjugates and the —+V,0;=0, 9)

static properties of the smA phase can be obtained from the at

expansion of the generalized energy Fy+ [fdr. Hence,

for the generalized energyn quadratic and bilinear ordgr 99i +V,01,=0, (10)

we find ot

e resulting dynamic equations for the conserved fields are

where g is the stress tensor. The above two equations are

1 1 the conservation laws for the density and the density of the
_ - o - 2
F_F0+f dr 2aSZ+(bP5p+b 00)S+5aWHNSW jinear momentum. The balance equations for the noncon-
L L served fields take the forms
+(c”5p+c"50)W+EB(VZUZ)2+§K(VfuZ)2 v o, R ”
E + iJi _?1 ( )
+(d?Sp+d?So+dVYW)V,u+ y(V,u,)S|, (2) u
z —
T X=0, (12
whereF has the standard form of the smectic free engidy
supplemented by quadratic and bilinear terms in the moduli. ‘7_5+Y:0 (13)
As usual for the smectié-phase, terms containirlg, u, are at '
not allowed due to the spontaneously broken rotational
symmetry.F,= [f,d7 is the generalized energy of isotropic M+Z_O (14

liquids with f0=(1/2)App(5p)2+Apa(5p)(50') ot
+(112)A,,(80)?+(112p)g% where A,,=(uldp),, Ayy

=(dTldo),, andA,,=(JdT/dp),. HereB is the compres- Herej/ is the entropy current, an¥, Y, andZ are the qua-
sional modulus of the smectic layers, and the layer bendingicurrents associated with the density wave and changes of
modulusK is close in magnitude to the splay modulus in the nematic and smectic order parameters, respectively. The
nematics[1]. The transverse Laplacian is defined ﬁ% quantity R/T is called the entropy production, arid the
=(&;—nin))V;V;. It is well known that the linearized dissipation function. The dissipation function is zero for re-
theory[and hence Eq(2)] is not rotationally invariant. For versible processes and positive for irreversible processes.
nonlinear invariant treatments of smectic phases, see Refs. We now evaluate the currents; andj{ and the quasi-
[20,21. currentsX, Y, andZ. To obtain them we split all currents and
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quasicurrents into reversibleRE0) and irreversible R

PHYSICAL REVIEW E 63 061708

ZD=KMM+aP—)\ijVjViT—dnjVij\I'k. (28)

>0) contributions. Using general symmetry and Galilean in-

variance arguments, for the reversible parts of the currents

we obtain
9r=pvi, (15)
o =P8 — W8+ wiP+ BiM, (16)
XR=v,, 17
YR= A, (18)
ZR=BiA; (19
j*=o, (20

where p is the hydrostatic pressurdy;; is the symmetric
velocity gradient\;; = 1/2(V,v;+V,v;), andB;; andu;; take
the uniaxial formp;; = Bjnin;+ B, (8;—nin;). The hydro-

static pressurg is like in an isotropic fluid, and can be

expressed as
p=—f+up+To+tv-g. (21

For the dissipative parts we will now givg, which repre-

IIl. MACROSCOPIC EQUATIONS IN THE
ISOTROPIC PHASE ABOVE THE
SMECTIC-A—-ISOTROPIC TRANSITION

In the isotropic phase above the isotropic—smeAtican-
sition there are patches with transient positional as well as
orientational order characteristic of smectic clusters, and
those with only transient orientational order characteristic of
nematic clusters. Both types of clusters vary as a function of
space and time, and do not give rise to a nonvanishing value
of either type of order parameter. Thus, as macroscopic vari-
ables, we have the nematic tensor order param@fgras
well as the complex scalar smectic order paramgterhose
modulus characterizes tHéme dependentstrength of the
smectic order and whose phasge rather the gradient of)iis
related to the wave vector of the smectic patches. For the
hydrodynamic variables in the isotropic phase, we have,
and g, respectively. For mixtures one has, in addition, the
concentratiort as a conserved quantity. We will also include
electric field effects, and take the electric displacement field
D; as dynamic variable. For a description of the macroscopic
dynamics in the isotropic phase we proceed in a way similar
to that in Sec. Il.

sents the dissipative work that must be done on the system Thus the Gibbs relation takes the form

by external forces if the thermodynamic variations were sus-
tained. Within linear irreversible thermodynamics the dissi- Tdo=df—udp—v;dg—P;dQ;— (u/dy+ u?* dy*)
pation function is a bilinear form of the forces. Using stan-

dard symmetry argumentg3,17], like time reversal
symmetry, rotational invariance, etc., we find

1
R=fd7'

1 T
§Kij(ViT)(VJT)+§ 77ijk|(Vin)(VkU|)+§ P2

m 1
+ E(Vi‘l'i)(vk‘l'k)+§KMM2+ Nij (ViT) (VM)
+dn (V¥ ) (VM) +en(V,¥) (Y, T) |, (22)

where\;;, ¢;;, and the thermal conductivity tensey; have
uniaxial forms. The viscosity tensoy;; has five indepen-
dent coefficient$3] in the smecticA phase.

Then the dissipative parts of the currents and quasicur-

rents are obtained by taking variational derivativefafith

respect to one thermodynamic force, while keeping all other

forces fixed. Thus the dissipative parts read

i7°=—KjV;T=\;V;M—c;V;P—enV,V,, (23
9r=0, (24)

o == Vivr , (25
XP=—mV,¥,—bn,V;P—dnV,M—enV,T, (26
YP=7P+aM—c;V,V,T—bn,V,V, ¥, (27

+E;dD; (29
where the asterisk denotes complex conjugation. The ther-
modynamic forces are temperaturechemical potentiak,
velocity v;, and electric fieldsE;, P;;, w”, and u’*, re-
spectively. For the generalized energy in the isotropic phase,
we find

A A 1
_ PP 2 aga 2 2
F—fdr > (6p)°+A,.(p)(60)+ ——(d0) +—2pg

2

a 1
+ EQijQij + E'—ijklmn(Vink)(V|an)+O(Q3)

16 b% C
+ 5 [+ [+ S (V2 ad) yl?+h Qg2

+(bP8p+b780)Qf +(cPSp+c )|y
1
- ZDiZ_XlDiDjQij —Xx2DiV;Qi;— x3DiDi| ]2

+Gij Qij (Vi) (V19*) | (30)

The first line contains the contributions familiar from a
simple fluid, where the abbreviations,,, A, andA ,, are

the same as in Sec. Il. The second line contains all the terms
characteristic of the isotropic-nematic transiti@2]. Line 4

lists the static terms coupling the order parameters to density
p and entropy density, respectively, and the fifth line rep-
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resents the coupling of the order paramet®s and ¢ to
electric fields, where: is the dielectric constant of the iso-
tropic phase. In the third line we have given the contributions
of the smectic order parametér and its coupling terms to
the nematic order paramet€;; . We note that the gradient
term ~C is isomorphic to the corresponding term in the
Swift-Hohenberg equation describing the onset of convec-
tion in two dimensiongd23]. In both casegthe isotropic—
smecticA phase transition and the nonequilibrium transition
heat-conduction-state—convectjaane has a transition from

a completely isotropic state to a state which is characterized

by a mean wavelengtkthe wavelength of the convective |, writing down Egs.(32)

rolls and the layer spacing in the smecficphase, respec-

PHYSICAL REVIEW B3 061708

M = aW+ yW3+2W(c”Sp+c?So+hQ2)

+AWGQ;(V;$)(V ) —2xsWD;D;
+CW([V2p12+([ V012 a3)?), (36)

1
Ei:gDi+2XleQij+2X3DiW2 (37)

0 =4GWQ;V;— CWA(V?+20q5-2[V;6]*) V.

(39

—(38) we have concentrated on

spatially homogeneous terms with respeciM@andQ;; , and

tively). Thus—from the point of view of symmetry \ue have also only kept the coupling terms to lowest order in

considerations—there is a close structural analogy for thig,

contribution between an equilibrium phase transition
(isotropic—smectid) and a nonequilibrium phase transition
(heat-conduction-state—convectiom the sixth line the con-
tribution ~G;j,; represents the lowest order coupling of the
nematic and the smectic order parameters containing spatial
gradients. In the isotropic phase it takes the struc@ig,
=G(dikd; + 6y djk), and thus contains one independent co-
efficient. Apparently this contribution has not been discussed
in the literature before. We note, however, that in a very
recent paper we investigatd@4] a Ginzburg-Landau de-
scription of the isotropic—smecti- transition, including
such a coupling term.

In the following we will write down the macroscopic
equations in terms of real quantities. We therefore replace
the smectic order parametér by its modulus W= ¢, and
its phaseg. Since the energy does not depend on the phase
(“gauge invariance” meaning translational invariance in the
smectic caseonly gradients of the phasg enter the Gibbs
relation. This is very similar in spirit to the situation in su-
perfluid “He above thex transition[10].

For the modified Gibbs relation, we then have

TdO’zdf_,LLdp_vidgi_ P”dQ,J _MdW_QidVi¢

e corresponding variables. The balance equations are

dp
E""Vigizoa (39
99 _
W‘FVJ'O'”'—O, (40)
79 =N a1
ot Vil =T (41
dQ;;
7”+UkaQij+Yijzoy (42)
JW
W‘FUiViW‘f‘Z:O, (43)
dp
o TiViet1=0, (44)
dD; .
W-FUkaDi'F(DX w)i+jie=O, (45)

with the vorticity w;=(1/2)(curlv);. Equation (45) ex-

+E;dD;, (31)  presses conservation of the electric charge densitj21]
with p®=V;D; in suitable units.

We now evaluate the reversible and dissipative contribu-

Whelzeing =up’e+pu’* e ¢ and ViQdi= ol " ?_'¢ tions to the currenti’, o;;, andjf and quasicurrents; , Z,
—p"€?], and for the thermodynamic forces we fifide- andl 4. For the reversible parts of the currents we obtain

glecting gradients oV and ofQ;;)

ST=A,,80+A,,8p+b7Q% +coW?, (32

Su=A,,8p+A,,d0+b Qf +c W2, (33)
1

Uj :I_)gi ) (34)

P;=aQ;;+0(Q?) +2(b? 8o +b”5p+hW?)Q;;— x1D;D;

ar=pu;, (46)

O-:T:pélj+)\PIJ+ﬁ5IjM+%(D]EI_EJDI)! (47)

Yi=NA, (48)
ZR=BA, (49
15=0, (50)
i =0, (51

where we have used the symmetrized velocity gradignt

+2GWA(Vi$)(V9), 35  =(U2)(Vio;+V;v).
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In a similar way as in Sec. Il, we obtain the dissipationof order are decoupled to lowest order. The classical result
function above the nematic-isotropic transitip22],

R=fd7'

1
FAMVIT(ViM) + aijia Pij PuM + 5 73 Pij Py

K 1 1 2 X1 202
E(ViT)(ViT)"”E77ijk|AijAk|+ EKMM S= ;8 E y (63)

is obtained, showing a divergent nematic order at the tem-

perature for a hypothetical isotropic to nematic second order

. phase transition, where the system would order spontane-

o , ~ ously already without an external field. For the smectic order
+7EiEi+K E,(V|T)+)\E|(V|M) we Obtain

+Ti’jkl(ViT)(VJPkl)+;ijklEi(ViPkl) WZIE(_a_’_ZXgSZEZ) (64)
Y

{
+ E(Viﬂi)(vjﬂi) ' (52 indicating a possible smectic ordering for positiyg if the
external field exceeds the threshcﬂii:a/(zmsz). This
where ajj , Tijki » 7ijk| , and Ti’j,d are of the formay threshold is zero at the temperaturg, for a hypothetical
=(al2)(6ikd; + 6y i), and wheren;;; has a structure fa- isotropic to smectiA second order phase transition. Bf
miliar from the hydrodynamics of simple liquidi$8]. Hence  <E_, there is no smectic orde¥\(=0). For a given external

the dissipative parts of the currents read field E>E, the induced smectic order is largest for-Tj,,
oD ) ) but does not diverge. The difference from the nematic order
Jim==«ViT=AViM=7"V;P;; —k'E;, (53 [Eq. (63)] is due to the fact that an external field breaks
5 rotational (but not translationalinvariance externally.
gi =0, (54) Next we investigate the influence of the contributiei,
o which couples smectic and nematic orders. In this case, we
T =~ MijkAxl» (55 obtain
> 0=aS+2hSW-— x,D?, (65
D ’
Yij = TPij +2aPij M - T V|VJT_ E(VIEJ +VjEi),
(56 —yW2=a+2hS—2y,D2, (66)
~ = 2
ZD:KMM+aPijPij_)\ViViT_}\ViEi, (57) oE DZ(1+28X1S+28X3W ) (67)
b Eliminating W2, we obtain, to lowest order im (for E
|¢:§Viﬂi, (58) >EC)!
0= GEE 4 'V TH+AXV- M+ 7V P:. 4h
jP=0FE + k' VT+AV,M+7V,P;, (59) aS=X1D§[1— a;(SAZ | 68

IV. SUGGESTIONS FOR EXPERIMENTS AND

CONCLUSIONS where A3=D2—a/(2y,), if positive, and zero otherwise.

Thus a negativén increases the nematic order. The nematic

To evaluate the influence of the cross-coupling betweemrder[Eq. (68)], and therefore the electric birefringence, ac-
the smectic and the nematic order parameter, we investigatgires a correction~E* from the coupling to the smectic
its influence on the electric birefringence induced by an exorder parameter above the isotropic—sme&ticansition for
ternal electric field in the isotropic phase above theE>E.. We note that the temperature dependenc&(&?)
isotropic—smectid transition. From Eqs(35—(37), in a  predicted here is completely different from that observed
static situation for constant density and under adiabatic corabove the nematic-isotropic transition.
ditions in lowest order, neglecting all nematic-smectic cross The effect of the paramet&, which couples smectic and

couplings and takingE||2 (with Q,,=S) andV,¢=q, we nematic orders through a finite wavelength of the tran-

obtain sient smectic layer structure, is rather different. With the
same procedure as above, to lowest ordés,imnd for fields
0=aS— XlDf, (60) exceedingg., the nematic order is
o 2 2 4
0T 2xsbat W (60 as=uDZ~ = *Gajad, (69
D,=¢E. (62)

showing noE* correction, but a change of slope SIE2
Thus in this approximation we find that an external field canaboveE, [below E. there is noG correction to the classical
induce both nematic and smectic orders, but these two typagsult(63)].
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It also seems worthwhile to emphasize the difference CZZCS+,32a. (71
from the case of the strain birefringence observed experi-
mentally above the isotropic—smec#ctransition in liquid By choosing a suitable frequency of the sound wave of
crystalline elastomer§25]. In the latter case the induced ~10*...10 Hz, one obtains a wavelength of
amount of birefringencdan is found to beAn~o (herecis  ~1...10 cm for themodulation of W. Thus as one ap-
the applied mechanical stres§urthermore, the temperature proaches the isotropic—smec#iciransition from above by
dependence is qualitatively different from the one discussedooling, one should be able to detect via spatially resolved
above. X-ray scattering a spatially varying degree of smectic order

To test one of the dynamic cross-coupling effects we ininduced by a stationary sound wave, provid@dis large
vestigate the consequences associated with the coeffigientenough.
in Egs. (47) and (49): the divergence of the velocity field The macroscopic dynamics in the isotropic and in the lig-
couples to the modulus of the smectic order. This leads taid crystalline smectié phase near the isotropic—smecic-
suggest the following setup. A sample of a material above aphase transition have been derived using symmetry consid-
isotropic to smectid transition is exposed to a stationary erations, linear irreversible thermodynamics, and conserva-
sound wave. This sound wave is longitudinal and thus contion laws. For some of the static and dynamic cross coupling
nected toV;v;#0. This in turn gives rise to a nonvanishing terms, we have suggested experiments to test their influence
value of W: using Eqgs.(43) and(49) we obtain on the macroscopic dynamics near this phase transition.
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